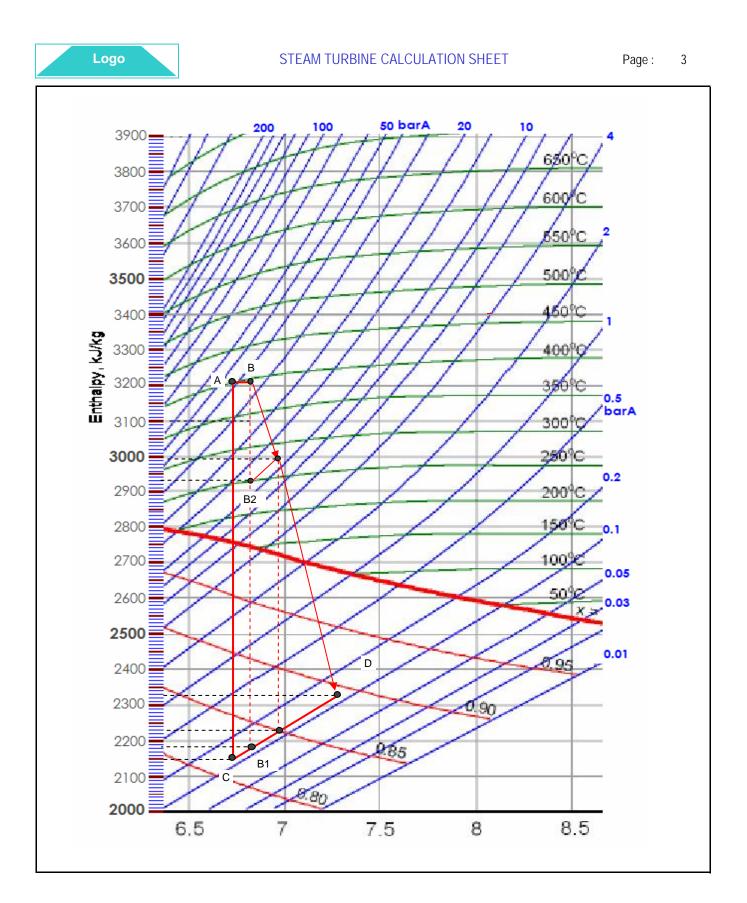

STEAM TURBINE CALCULATION SHEET STEAM CONSUMPTION

Designation		Quantity		Note and additional information
Turbine type		Control sta	age : Curtis	
REQUIRED CONDITION				
P N pi ti po	kW RPM bar A C bar A	7000 7500 42 400 0.12		
STEAM DATA				
hi hos ∆hs Governor valve factor ∆hs' hos' pi' ti'	kJ/kg kJ/kg kJ/kg kJ/kg bar A C	3210 2155 1055 0.97 1023.4 2186.7 40 395		See steam Mollier diagram, point A. See steam Mollier diagram, point B = hi - hos Multi valve 0.97, single valve 0.93 = Gov. vlv. Factor x Δ hs (equation 11) See diagram, point D
vi' <u>CALCULATION</u>	m³/kg	0.074		See steam table at pi' and ti'
Nominal diameter, D Peripheral velocity, U Best head, $\Delta h'_{IMP}$	mm m/s kJ/kg kJ/ka	550 216.4 304.3 2905.7		See figure 9. At required speed, select D Equation 1 Eq. 4 at μ_S = 6.5 for Curtis and = 2 for Rateau =hi - $\Delta h'_{IMP}$
po _{IMP}	bar A	11.0		Point B2 where po _{IMP} approx. = 0.3 x pi'
Head coefficient, μ_S Efficiency, η_{05} Entrance area factor, A		6.5 0.71 34		Figure 12
Trial error of control stage powerI x εNozzle height, IεEfficiency factor FIEfficiency factor Fe	kW mm	1755 32.148 70 0.459 1.00 0.987		First trial appr. about 0.2 of total power Equation 15 Select I so that ε within the range below 0.015-0.45 weld/half circle, max. \approx 0.8 Figure 13 Equation in figure 13 = $\eta_{05} \times F_1 \times F \varepsilon$
	REQUIRED CONDITIONPNpitipoSTEAM DATAhihosAhsGovernor valve factorAhs'hos'pi'ti'vi'CALCULATIONControl StageNominal diameter, DPeripheral velocity, UBest head, $\Delta h'_{IMP}$ hos'_IMPPOIMPHead coefficient, μ_S Efficiency, η_{05} Entrance area factor, ATrial error of control stage powerI x εNozzle height, IεEfficiency factor FI	REOUIRED CONDITIONPKWNRPMpibar AtiCpobar ASTEAM DATANihikJ/kghoskJ/kgAhskJ/kgGovernor valve factorkJ/kgAhs'kJ/kgpi'bar Ati'Cvi'm³/kgCALCULATIONMmPeripheral velocity, Umsgest head, $\Delta h'_{IMP}$ kJ/kgpopobar AHead coefficient, μ_S Efficiency, η_{05} Entrance area factor, ATrial error of control stage powerI x ε mmNozzle height, I ε Efficiency factor FIEfficiency factor FI	REQUIRED CONDITIONControl sta CONDENSIPKW RPM pi7000 7500 42 bar A 0.12pibar A ti42 c 400 0.12pobar A 0.1242 400 0.12STEAM DATAVhikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikJ/kg plantshikj/kg plantshikj/kg plantshi<	Control stage : Curtis CONDENSING TURBINEREQUIRED CONDITIONKW RPM pi7000 S500 piPKW N Pi7500 bar A42 42tiC 400 po42 bar A42tiC 400 po400 bar A0.12STEAM DATAV S1050.12hikJ/kg pos2155Ahs bas Ahs bas'kJ/kg pi'1023.4 poshos' kJ/kg pi'kJ/kg pi'1033.4 bar A d0hos' kJ/kg pi'kJ/kg pi'1033.4 bar A d0hos' bar A ti'C a395395 corretvi'm³/kg pi'0.074CALCULATIONmm ms pripheral velocity, U bas A bas'me pomp550 pompPeripheral velocity, U pompm/s bar A d11.0216.4 pompBest head, Δh_{iMP} bar A Head coefficient, μ_S 6.5 d.71 d.11.0Efficiency, η_{05} Efficiency, η_{05} 0.71 d.11 productionI'x ϵ m Nozzle height, I ϵ 70 d.459Efficiency factor FI Efficiency factor FI

STEAM TURBINE CALCULATION SHEET

No.	Designation		Quantity	Note and additional information
1	∆he	kJ/kg	213.2	$= \eta_1 x \Delta h_{IMP}$
2	he _{IMP}	kJ/kg	2996.8	Than make steam process in Mollier diagr.
3	Exhaust temperature, to	С	300	See steam Mollier diagram
4	Exhaust specific volume, vo	m³/kg	0.236	See steam table
5	P _{LOSS}	kW	47.92	Equation 5
6				
7	Reaction Stages			
8	Reaction stage power	kW	5245.0	
9 10	hi hos	kJ/kg kJ/kg	2996.8 2265	
10	Δhs _R	kJ/kg	731.83	
12	Pitch diameter, D	mm	600	See fig. 11, at required speed, select pitch
13	Base diameter	mm	500	and base diameter
14	Average blade height, I	mm	100	
15	D/I		6	
16	S/I		0.40	=0.2 LP blade,=0.4 MP and =0.6 HP
17	Calculated number of stages	mla	14 236.0	Eq. 12a (integer number)
18 19	Peripheral velocity, U Steam velocity, C	m/s m/s	323.2	
20	Velocity ratio, U/C	111/3	0.73	
21	∆hs _{RSTG}	kJ/kg	52.3	
22	η _R	0	0.89	
23	Δhe_R	kJ/kg	647.67	
24	he _R	kJ/kg	2349.2	
25	X		0.900	
26	Wet enthalpy	kJ/kg	2700.0	
27	Wet eficiency, η_{WET}		0.973	
28	Mechanical efficiency, η_m		0.980	
29	Turbine efficiency, η		0.84	$= \eta_R x \eta_m x \eta_{WET}$
30				
31	<u>Trial result</u>			
32				
33 34	Mass flow for contri stage	ton/hr	30.45 30.59	Trial power of control stage until mass flow for
34 35	Mass flow for reaction stages	ton/hr	30.59	control stage and reaction stages is almost equal
36				Cyuci
_				



STEAM TURBINE CALCULATION SHEET STEAM CONSUMPTION

No.	Designation		Quantity		Note and additional information
1 2 3	Turbine type		Control sta	REACTION ige : Rateau	
4 5	REQUIRED CONDITION		CONDENSI	NG TURBINE	
6 7 8 9 10 11	P N pi ti po	kW RPM bar A C bar A	12000 6000 42 400 0.12		
12 13 14	<u>STEAM DATA</u> hi	kJ/kg	3210		See steam Mollier diagram, point A.
15 16 17	hos Δhs Governor valve factor	kJ/kg kJ/kg	2240 970 0.97		See steam Mollier diagram, point A. See steam Mollier diagram, point B = hi - hos Multi valve 0.97, single valve 0.93
18 19 20	∆hs' hos' pi'	kJ/kg kJ/kg bar A	940.9 2269.1 40		= Gov. vlv. Factor x Δhs (equation 11) See diagram, point D
21 22 23	ti' vi'	C m ³ /kg	395 0.074		See steam table at pi' and ti'
24 25	<u>CALCULATION</u> <u>Control Stage</u>				
26 27 28	Nominal diameter, D Peripheral velocity, U po _{IMP}	mm m/s bar A	600 188.8 12.0		See figure 9. At required speed, select D Equation 1 Point B2 where po _{IMP} approx. = 0.3 x pi'
29 30	hos' _{IMP} ∆h' _{IMP}	kJ/kg kJ/kg	2930.0 280.0		=hi - $\Delta h'_{IMP}$ Eq. 4 at μ_S = 6.5 for Curtis and = 2 for Rateau
31 32	Number of stage, z Head coefficient, μ_S		3 2.6		
33 34 35	Efficiency, η ₀₅ Entrance area factor, A Trial error of control stage power	kW	0.80 34 2830		First trial appr. about 0.2 of total power
36 37	I x ε Nozzle height, I	mm	4.738 25		Equation 15, P_{STG} and Δh_{STG} each row Select I so that ε within the range below
38 39 40 41	ε Efficiency factor FI Efficiency factor Fe Efficiency, η _{IMP}		0.190 0.97 0.945 0.73		0.015-0.45 weld/half circle, max. \approx 0.8 Figure 13 Equation in figure 13 = $\eta_{05} \times F_1 \times F_2$

STEAM TURBINE CALCULATION SHEET

No.	Designation		Quantity	Note and additional information
1	∆he	kJ/kg	205.5	$= \eta_{IMP} X \Delta h'_{IMP}$
2	he _{IMP}	kJ/kg	3004.5	Than make steam process in Mollier diagr.
3	Exhaust temperature, to	С	280	See steam Mollier diagram
4	Exhaust specific volume, vo	m³/kg	0.206	See steam table
5	P _{LOSS}	kW	22.81	Equation 5
6				
7	Reaction Stages			
8	Reaction stage power	kW	9170.0	
9 10	hi hos	kJ/kg kJ/kg	3004.5 2230	
10	Δhs _R	kJ/kg	774.49	
12	Pitch diameter, D	mm	600	See fig. 11, at required speed, select pitch
13	Base diameter	mm	500	and base diameter
14	Average blade height, I	mm	100	
15	D/I		6	
16	S/I		0.40	=0.2 LP blade,=0.4 MP and =0.6 HP
17	Calculated number of stages	,	23	Eq. 12a (integer number)
18 19	Peripheral velocity, U Steam velocity, C	m/s m/s	188.8 259.4	
20	Velocity ratio, U/C	111/5	0.73	
21	Δhs_{RSTG}	kJ/kg	33.7	
22	η_R		0.89	
23	Δhe _R	kJ/kg	685.42	
24	he _R	kJ/kg	2319.1	
25	X	lionig	0.890	
26	Wet enthalpy	kJ/kg	2720.0	
27	Wet eficiency, η_{WET}	Ū	0.968	
28	Mechanical efficiency, η_m		0.995	
29	Turbine efficiency, η		0.85	$= \eta_R x \eta_m x \eta_{WET}$
30				
31	<u>Trial result</u>			
32				
33	Mass flow for contrl stage	ton/hr	49.97	Trial power of contro stage until mass flow for
34 25	Mass flow for reaction stages	ton/hr	50.01	control stage and reaction stages is almost
35 36				equal
50				

