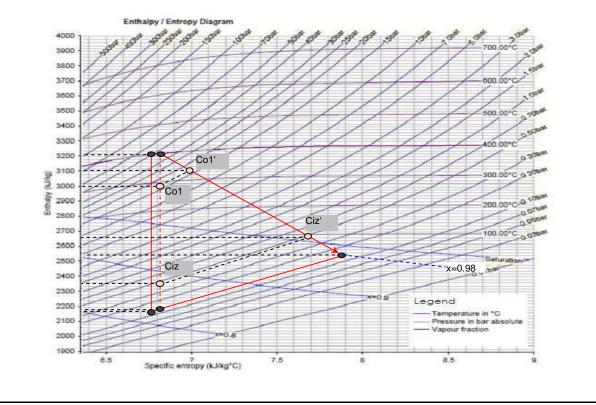


STEAM TURBINE CALCULATION SHEET STEAM CONSUMPTION

No.	Designation		Quantity		Note and additional information
1 2	Turbine type, figure 3		Cl	JRTIS	
3					
4 5	REQUIRED CONDITION				
6	Р	kW	535		
7	N	RPM	4000		
8 9	pi ti	bar A C	42 400		
10	po	bar A	13		
11					
12	STEAM DATA				
13 14	hi	kJ/kg	3210		See steam Mollier diagram
15	hos	kJ/kg	2890		See steam Mollier diagram
16	Δhs	kJ/kg	320		= hi - hos
17 18	Governor valve factor ∆hs'	k l/ka	0.93 297.6		Multi valve 0.97, single valve 0.93
18	Ans hos'	kJ/kg kJ/kg	297.6 2912.4		= Gov. vlv. Factor x Δ hs (equation 11)
20	pi'	bar A	38		
21	ti'	С	395		
22	vi'	m³/kg	0.077		See steam table at pi' and ti'
23					
24 25	CALCULATION				
26	Nominal diameter, D	mm	800		See figure 9. Nearest cross point RPM vs Δ hs'
27	Peripheral velocity, U	m/s	167.84		Equation 1
28	Head coefficient, μ_S		10.564		Equation 4
29	Efficiency, η_{05}		0.66		Figure 12
30	Entrance area factor, A		34		
31	X E	mm	0.447		Equation 15
32 33	Nozzle height, I Degree of admission, ε	mm	25.0 0.018		0.015 - 0.45 for welded, min. 0.07 reaming
34	Efficiency factor FI		0.93		Figure 13
35	Efficiency factor Fe		0.792		Equation in figure 13
36	Efficiency, η_1		0.49		$= \eta_{05} \times F_1 \times F_{\epsilon}$
37	∆he	kJ/kg	144.5 2045 5		$= \eta_1 x \Delta hs'$
38 39	he Exhaust temperature, to	kJ/kg C	3065.5 <u>305</u>		Than make steam process in Mollier diagr. See steam Mollier diagram
40	Exhaust specific volume, vo	m ³ /kg	0.19936		See steam table
41	P _{LOSS}	kW	27.09		Equation 5
42	Mechanical efficiency, η_m		0.956		Figure 15
43	Turbine efficiency, η		0.46		$= \eta_1 X \eta_m$
44	Steam mass flow required, m	ton/hr	14.65		Equation 9
45	. 1	·			
46					
47 48					
40 49					

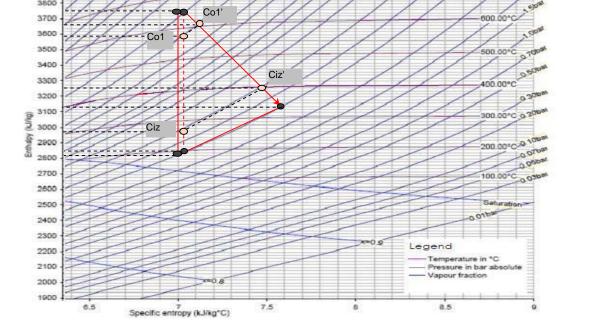


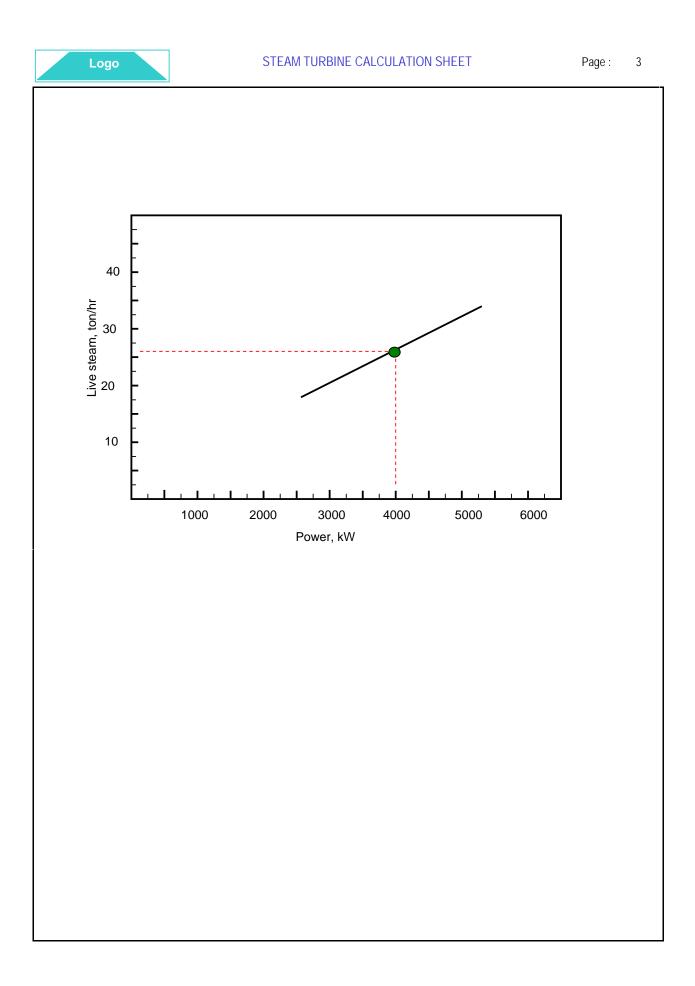
STEAM TURBINE CALCULATION SHEET STEAM CONSUMPTION

No.	Designation		Quantity		Note and additional information
1 2	Turbine type, figure 3		ρατελι	J STAGES	
3	ruibine type, figure 5			ING TURBINE	
4	REQUIRED CONDITION		CONDENS		
5					
6	Driven equipment		Syngas (Compressor	
7	Р	kW	5780		
8	Ν	RPM	10200		
9	pi	bar A	40		
10	ti	C	400		
11 12	ро	bar A	0.12		
12 13	STEAM DATA				
14	hi	kJ/kg	3205		See steam Mollier diagram
14	hos	kJ/kg	2160		See steam Mollier diagram
16	Δhs	kJ/kg	1045		= hi - hos
17	Governor valve factor	5	0.97		Multi valve 0.97, single valve 0.93
18	Δhs'	kJ/kg	1013.65		= Gov. vlv. Factor x Δ hs (equation 11)
19	hos'	kJ/kg	2191.35		
20	pi'	bar A	36		
21	ti'	C	395		At hi and pi' (point B)
22	vi'	m³/kg	0.081		See steam table at pi' and ti' (point B) or
23					extrapolate in steam table
24	CALCULATION				
25	Nominal diameter, D	mm	500		Figure 10. Nearest cross point RPM vs red dot line
26	Calculated number of stages, z1		6.04		
27	Min. no. of stages, zmin		4.95		
28	Taken no. of stages, z		6		Integer
29	Enthalpy per stage, Δh_{STG}	kJ/kg	168.9		= Δhs' / z
30	Power/stage, P _{STG}	kW	963.3		= P / z
31	Peripheral velocity, U	m/s	267.5		Equation 1
32	Head coefficient, μ_S		2.36		Equation 4
33	Efficiency, η_{05}		0.75		Figure 12
34	Entrance area factor, A		34		
35	First stage				
36	lxε	mm	2.787		Equation 15
37	Nozzle height, I	mm	25		Fill with adjustment
38	Degree of admission, ϵ		0.111		Max. 0.9 for Rateau turbine, fig. 16
39	Efficiency factor F ₁		0.95		Figure 13
40	Efficiency factor F ϵ		0.922		Equation in figure 13
41	Efficiency, η_1		0.66		$= \eta_{05} \times F_1 \times F_{\epsilon}$
42	hos ₁	kJ/kg	3036.06		Make point at steam chart, Co1
43	Δh_{STG-1}	kJ/kg	111.03		
44	he _{stG-1}	kJ/kg	3093.97		Make point at steam chart, Co1'
45	po ₁	bar A	16.0		See steam chart
46	to ₁	C 3.,	325.0		
47	VO ₁	m³/kg	0.167		See steam table
48	P _{LOSS-1}	kW	70.81		Equation 5

Logo

	Logo	ST	EAM TURBINE (CALCULATION SHEET Page : 2
1				
2	Last stage			
3	Δhe	kJ/kg	666.2	= $\eta x \Delta hs'$ (preliminary eff. = 1'stg eff.)
4	he	kJ/kg	2538.8	Than make steam process in Mollier diagr.
5	hi _{stg-z}	kJ/kg	2649.9	Make points at steam chart, Ciz and Ciz'
6	pi ₁	bar A	0.4	See chart, p and t at point Ciz'
7	ti ₁	С	90.0	
8	vi ₁	m ³ /kg	3.66	
9	Entrance area factor, A		43	
10	Ιχε	mm	99.576	
11	Nozzle height, I	mm	110	
12	Degree of admission, $\boldsymbol{\epsilon}$		0.905	Max. 0.9 for Rateau turbine, fig. 16
13	Efficiency factor F ₁		1.00	
14	Efficiency factor F ϵ		1.00	
15	Efficiency, η_Z		0.75	
16	Vapor partial, X		0.980	
17	Exhaust temperature, to	С	48.7	See steam Mollier diagram
18	Exhaust specific volume, vo	m ³ /kg	13.02	See steam table
19	P _{LOSS-Z}	kW	0.47	Equation 5
20	<u>Average and Total</u>			
21	Total losses, P _{LOSS}	kW	213.86	
22	Average efficiency, η_{AVG}		0.70	
23	Wet eficiency, η_{WET}		0.9997	
24	Mechanical efficiency, η_m		0.985	Figure 15
25	Turbine efficiency, η		0.69	$= \eta_{AVG} \times \eta_m \times \eta_{WET}$
26	Steam mass flow required, m	ton/hr	30.73	Equation 9




Logo

STEAM TURBINE CALCULATION SHEET STEAM CONSUMPTION

No.	Designation		Quantity		Note and additional information
1 2	Turbine type, figure 3		ΒΔΤΕΔΙ	J STAGES	
3	rarbine type, figure 5				
4	REQUIRED CONDITION				
5					
6	Driven equipment			mpressor	
7	P	kW	4000		
8	N _.	RPM	9000		
9 10	pi ti	bar A C	110 650		
10	ро	bar A	5		
12	μο	bai A	5		
13	STEAM DATA				
14	hi	kJ/kg	3737		See steam Mollier diagram
15	hos	kJ/kg	2820		See steam Mollier diagram
16	Δhs	kJ/kg	917		= hi - hos
17	Governor valve factor	1.14	0.97		Multi valve 0.97, single valve 0.93
18	∆hs'	kJ/kg	889.49		= Gov. vlv. Factor x Δ hs (equation 11)
19 20	hos' pi'	kJ/kg bar A	2847.51 100		
20	pi ti'	C	645		At hi and pi' (point B)
22	vi'	m ³ /kg	0.0408		See steam table at pi' and ti' (point B) or
22	VI	iii /kg	0.0400		extrapolate in steam table
23 24	CALCULATION				extrapolate in steam table
25	Nominal diameter, D	mm	500		Figure 10. Nearest cross point RPM vs red dot line
26	Number of stages, z1		6.81		5
27	Min. no. of stages, zmin		2.60		
28	Taken no. of stages, z		7		Integer
29	Enthalpy per stage, Δh_{STG}	kJ/kg	127.1		= Δhs' / z
30	Power/stage, P _{STG}	kW	571.4		= P / z
31	Peripheral velocity, U	m/s	236.0		Equation 1
32	Head coefficient, μ_s		2.28		Equation 4
33	Efficiency, η_{05}		0.82		Figure 12
34	Entrance area factor, A		34		
35	<u>First stage</u>		51		
36	lxε	mm	1.170		Equation 15
37	Nozzle height, I	mm	25		Fill with adjustment
38	Degree of admission, $\boldsymbol{\epsilon}$		0.047		Max. 0.9. See fig. 16
39	Efficiency factor F ₁		0.97		Figure 13
40	Efficiency factor Fε		0.900		Equation in figure 13
41	Efficiency, η_1		0.71		$= \eta_{05} \times F_1 \times F_{\epsilon}$
42	hos ₁	kJ/kg	3609.93		Make point at steam chart, Co1
43	Δh_{STG-1}	kJ/kg	90.81		
44	he _{stG-1}	kJ/kg	3646.19		Make point at steam chart, Co1'
45	p0 ₁	bar A	69.0		See steam chart
46	to ₁	C	610.0		
		m ³ /kg			Coo steam table
47	VO ₁	-	0.057		See steam table
48	P _{LOSS-1}	kW	151.31		Equation 5

	Logo STEAM TURBINE CALCULATION SHEET Page : 2				
1					
2	<u>Last stage</u>				
3	Δhe	kJ/kg	635.7	= $\eta x \Delta hs'$ (preliminary eff. = 1'stg eff.)	
4	he	kJ/kg	3101.3	Than make steam process in Mollier diagr.	
5	hi _{stg-z}	kJ/kg	3192.2	Make points at steam chart, Ciz and Ciz'	
6	pi ₁	bar A	9.5	See chart, p and t at point Ciz'	
7	ti ₁	С	400.0		
8	vi ₁	m ³ /kg	0.32		
9	Entrance area factor, A		43		
10	Ιχε	mm	7.339		
11	Nozzle height, I	mm	25		
12	Degree of admission, ϵ		0.294		
13	Efficiency factor F ₁		0.97		
14	Efficiency factor F ϵ		0.97		
15	Efficiency, η _z		0.77		
16	Vapor partial, X		0.00	Fill with 0 (zero) for back pressure turbine.	
17	Exhaust temperature, to	С	330	See steam Mollier diagram	
18	Exhaust specific volume, vo	m³/kg	0.553	See steam table	
19	P _{LOSS-Z}	kW	11.98	Equation 5	
20	Average and Total				
21	Total losses, P _{LOSS}	kW	571.53		
22	Average efficiency, η_{AVG}		0.74		
23	Wet eficiency, η_{WET}		1.00		
24	Mechanical efficiency, η_m		0.971	Figure 15	
25	Turbine efficiency, η		0.72	$= \eta_{AVG} x \eta_m x \eta_{WET}$	
26	Steam mass flow required, m	ton/hr	25.68	Equation 9	
Enthalpy / Entropy Diagram 4000 36					
	3400	1D	\times	2000	

