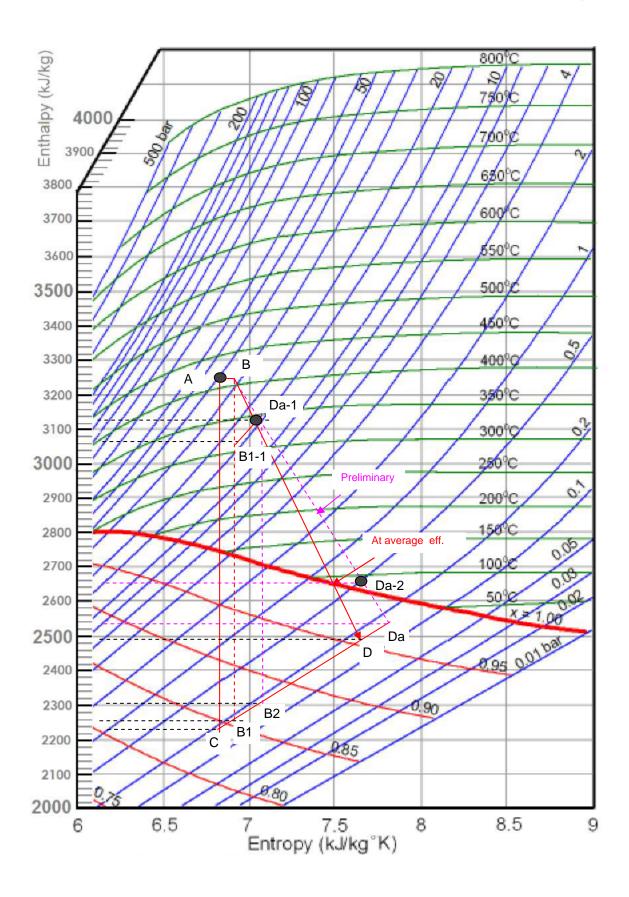


STEAM TURBINE CALCULATION SHEET

No.	Designation		Quantity		Note and additional information
1 2	Turbine type, figure 3		CUR	RTIS	
3	51 - 5		STAND		
4	REQUIRED CONDITION				
5		1 /l	Normal	Rated	
6 7	Steam flow available, m Turbine speed, N	ton/hr RPM	15 4000		Pefere reducing gear or without gear
8	Inlet pressure, pi	bar A	4000		Before reducing gear or without gear
9	Inlet temperature, ti	C	400		
10	Exhaust pressure, po	bar A	13		
11					
12	STEAM DATA				
13	hi	kJ/kg	3210		See steam Mollier diagram, point A
14	hos	kJ/kg	2900		Mollier diagram, isentropic proc., point C
15	Δhs	kJ/kg	310		= hi - hos (point A to C)
16	Governor valve factor		0.93		Multi valve 0.97, single valve 0.93
17	∆hs'	kJ/kg	288.3		= Gov. vlv. Factor x Δ hs (equation 11)
18	hos'	kJ/kg	2921.7		Point B1
19 20	pi' ti'	bar A	39 205		Point B for pressure
20		C 3	395		Point B for temperature
21	vi'	m ³ /kg	0.075		See steam table at pi' and ti'
22	CALCULATION				
23	Nom. Diameter at best eff.,	mm	1004		Equation in figure 9. at μ s = 6.5 (for Curtis)
24	Design dia., D	mm	1000		Fill with adjustment
25	Peripheral velocity, U	m/s	209.80		Equation 1
26	Head coefficient, μ_S		6.550		Equation 4
27	Efficiency, η_{05}		0.71		Figure 12
28	Entrance area factor, A		34		Page 16
29	3 X L	mm	0.541		Equation 15 but replace P by (Δ hs' x m x η_{05})
30	Design nozzle height, I	mm	25.0		Fill so that $\boldsymbol{\epsilon}$ within the range below
31	Degree of admission, ϵ		0.022		Half circle, 0.015-0.45 for wld, min. 0.007 reaming
32	Efficiency factor FI		0.95		Figure 13
33	Efficiency factor Fe		0.794		Equation in figure 13
34	Efficiency, η_1		0.54		$= \eta_{05} \times F_1 \times F_{\epsilon}$
35	∆he	kJ/kg	154.4		$= \eta_1 x \Delta hs'$
36	he Evhauat tamparatura ta	kJ/kg	3055.6		= hi - Δ he, point D in Mollier diagram
37	Exhaust temperature, to	C 3	305		See steam Mollier diagram at point D
38	Exhaust specific volume, vo	m ³ /kg	0.19936		See steam table
39	P _{LOSS}	kW	68.49		Equation 5
40	Mechanical efficiency, η_m		0.956		Figure 15
41	Turbine efficiency, η		0.51		$= \eta_1 X \eta_m$
42	Power	kW	546.54		Equation 9
43	Note for cell and font color :				
44	XXX.X Input data or data ta			XXX.X	Selected data or design where adjustment
45	XXX.X Calculation result or		t has been		is permitted
	converted in equatio	n			

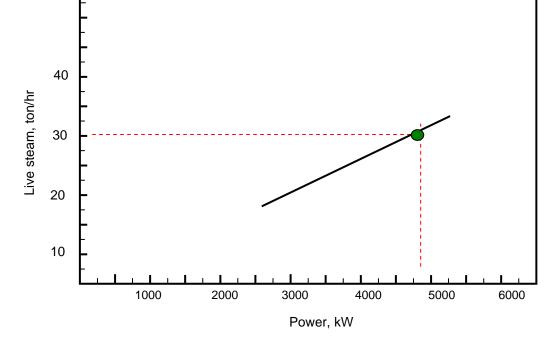

STEAM TURBINE CALCULATION SHEET

No.	Designation		Quantity		Note and additional information
1					
2	Turbine type, figure 3				
3 4	REQUIRED CONDITION		CONDENSI	NG TURBINE	
5	RECORED CONDITION		Normal	Rated	
6	Driven equipment			ompressor	
7	Steam flow available	ton/hr	15		
8	Ν	RPM	10200		
9	pi	bar A	40		
10	ti	С	400		
11 12	ро Стелм рата	bar A	0.12		
12	<u>STEAM DATA</u> hi	kJ/kg	3205		See steam Mollier diagram, point A
14	hos	kJ/kg	2160		Mollier diagram, isentropic proc., point C
15	Δhs	kJ/kg	1045		= hi - hos
16	Governor valve factor		0.97		Multi valve 0.97, single valve 0.93
17	∆hs'	kJ/kg	1013.65		= Gov. vlv. Factor x Δ hs (equation 11)
18	hos'	kJ/kg	2191.35		Point B1
19	pi'	bar A	36		
20	ti'	C 3 "	395		At hi and pi'
21	vi'	m³/kg	0.081		See steam table at pi' and ti'
22					
23	CALCULATION				
24 25	Min. no. of stages, zmin Design dia., D	mm	5 500		Fig. 10. Nearest cross point RPM vs red dot line
25	Calculated number of stages, z1	111111	6.04		Fig. To. Nearest cross point RPM vs red dot line
20	Design no. of stages, z		6		Integer
28	Enthalpy per stage, Δh_{STG}	kJ/kg	168.9		$= \Delta hs' / z$
29	Peripheral velocity, U	m/s	267.5		Equation 1
30	Head coefficient, μ_{S}	11/5	2.36		Equation 4
31	Efficiency, η_{05}		0.81		Figure 12
					rigule 12
32 33	Entrance area factor, A <u>First stage</u>		34		
33 34	<u> X ε</u>	mm	1.527		Equation 15 but replace P by (Δ hs' x m x η_{05})
35	Nozzle height, I	mm	25		Fill with adjustment
36	Degree of admission, ε		0.061		Max. 0.9 for Rateau turbine, fig. 16
37	Efficiency factor F ₁		0.97		Figure 13
38	Efficiency factor F		0.905		Equation in figure 13
39	Efficiency, η_1		0.72		$= \eta_{05} \times F_1 \times F_{\epsilon}$
40	hos ₁	kJ/kg	3036.06		= hi - Δh_{STG} , point B1-1
41	Δhe_{STG-1}	kJ/kg	120.81		$= \eta_{05} x \Delta h_{STG}$
41	he _{stG-1}	kJ/kg	3084.19		= $h_{05} \wedge \Delta h_{STG-1}$, point B1-2
		0	16.0		
43	po ₁	bar A			See steam chart at point B1-2
44	to ₁	C 3	325.0		
45	VO ₁	m³/kg	0.167		See steam table
46	P _{LOSS-1}	kW	74.42		Equation 5

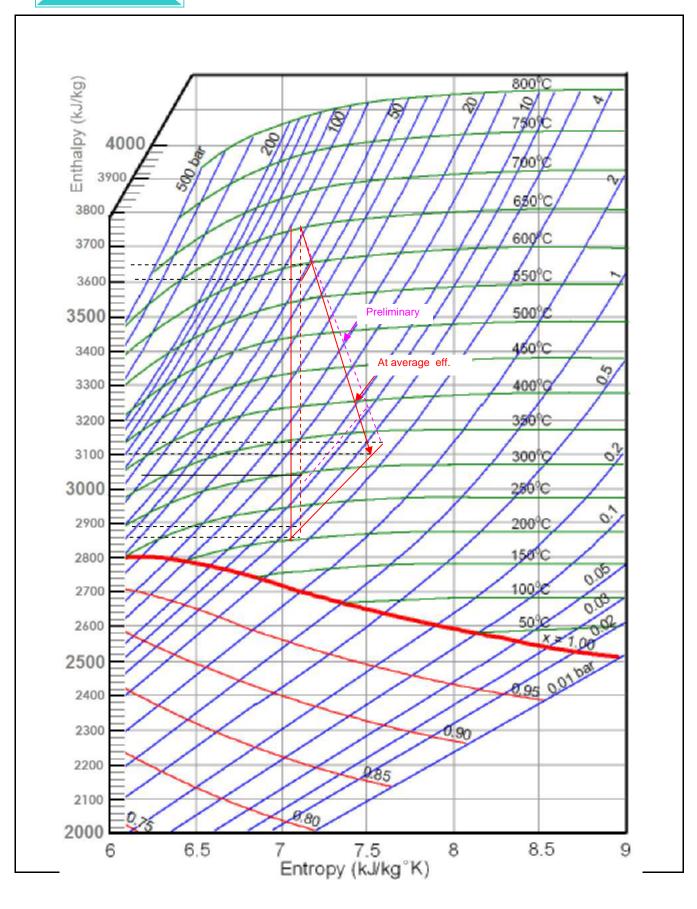
tage reliminary) eliminary) (preliminary) uperheated X for wet steam ce area factor, A height, I hcy factor F ₁ hcy factor Fε hcy, η _Z	kJ/kg kJ/kg bar A C for ti m ³ /kg mm mm	724.9 2480.1 2600.9 0.49 0.99 3.29 43 60.238 75 0.803	= $\eta_{I} x \Delta hs'$ (preliminary eff. = 1'stg eff.) =hi - Δhe , point Da =he _Z + ($\Delta he/z$). Point Da-2 Point Da-2 See steam table for specific volume Page 16 Equation 15 but replace P by ($\Delta hs' x m x \eta_{05}$) Fill with adjustment.
reliminary) eliminary) (preliminary) uperheated X for wet steam ce area factor, A height, I hcy factor F ₁ hcy factor Fε hcy, η _Z	kJ/kg kJ/kg bar A C for ti m ³ /kg mm	2480.1 2600.9 0.49 0.99 3.29 43 60.238 75	=hi - Δ he, point Da =he _z + (Δ he/z). Point Da-2 Point Da-2 See steam table for specific volume Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
eliminary) (preliminary) uperheated X for wet steam ce area factor, A height, I hcy factor F ₁ hcy factor Fε hcy, ηz	kJ/kg kJ/kg bar A C for ti m ³ /kg mm	2480.1 2600.9 0.49 0.99 3.29 43 60.238 75	=hi - Δ he, point Da =he _z + (Δ he/z). Point Da-2 Point Da-2 See steam table for specific volume Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
(preliminary) uperheated, X for wet steam ce area factor, A height, I ncy factor F_1 ncy factor F_2 ncy, η_Z	kJ/kg bar A C for ti m ³ /kg mm	2600.9 0.49 0.99 3.29 43 60.238 75	=he _z + (Δ he/z). Point Da-2 Point Da-2 See steam table for specific volume Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
uperheated X for wet steam ce area factor, A height, I hey factor F_1 hey factor F_2 hey factor F_2 hey factor F_2	bar A C for ti m ³ /kg mm	0.49 0.99 3.29 43 60.238 75	Point Da-2 See steam table for specific volume Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
ce area factor, A height, I ncy factor F_1 ncy factor F_8 ncy, η_Z	C for ti m ³ /kg mm	0.99 3.29 43 60.238 75	See steam table for specific volume Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
ce area factor, A height, I ncy factor F_1 ncy factor F_8 ncy, η_Z	m ³ /kg mm	3.29 43 60.238 75	Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
height, I ncy factor F ₁ ncy factor Fε ncy, η _Z	mm	43 60.238 75	Page 16 Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
height, I ncy factor F ₁ ncy factor Fε ncy, η _Z		60.238 75	Equation 15 but replace P by (Δ hs' x m x η_{05}) Fill with adjustment.
ncy factor F_1 ncy factor $F_ε$ ncy, η _Z		75	Fill with adjustment.
ncy factor F_1 ncy factor $F_ε$ ncy, η _Z	mm		
ncy factor F ϵ		0.803	
ncy factor F ϵ			Max. 0.9 for Rateau turbine, fig. 16
τς, η _Z		1.00	See fig. 13
5 1-		1.00	See fig. 13
		0.81	$=\eta_{05} \mathbf{x} \mathbf{F}_{1} \mathbf{x} \mathbf{F} \mathbf{\epsilon}$
partial, X	0	0.960	Cas steam Mallian diaman
st temperature, to	C	51	See steam Mollier diagram
st specific volume, vo	m ³ /kg	12.74	See steam table
	kW	0.65	Equation 5
ge and Total			
	kW		$= z \times 0.5 \times (P_{LOSS-1} + P_{LOSS-Z})$
e efficiency, η_{AVG}		0.76	$=(\eta_1 + \eta_2) / 2$
	kJ/kg	2740	See Mollier diagram
ciency, η _{wετ}		0.9989	$h_{WET} = 2740 \text{ kJ/kg}$
e efficiency, η		0.76	$= \eta_{AVG} \ x \ \eta_{WET}$
output, P	kW	2998.2	Equation 9
nical efficiency, η _m		0.963	Figure 15
	kW	2887	$= \eta_m x P$
	kJ/kg	2431	$=$ hi - Δ hs' x η
	2 2 2 2 2 2 2 2 2 2 2 2 2 2	ssses, P _{LOSS} kW le efficiency, η _{AVG} iciency, η _{WET} e efficiency, η output, P kW nical efficiency, η _m kW kJ/kg	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Power, kW

Page :


3

STEAM TURBINE CALCULATION SHEET


No.	Designation		Quantity		Note and additional information
1 2	Turbine type, figure 3		RATEAU	STAGES	
3	51 - 5			URE TRUBINE	
4	REQUIRED CONDITION				
5			Normal	Rated	
6	Driven equipment		Air Com	pressor	
7	Steam flow available	ton/hr	30		
8 9	N	RPM	9000 110		
9 10	pi ti	bar A C	650		
11	po	bar A	5		
12	STEAM DATA	bui / i			
13	hi	kJ/kg	3737		See steam Mollier diagram
14	hos	kJ/kg	2820		See steam Mollier diagram
15	Δhs	kJ/kg	917		= hi - hos
16	Governor valve factor		0.97		Multi valve 0.97, single valve 0.93
17	∆hs'	kJ/kg	889.49		= Gov. vlv. Factor x Δ hs (equation 11)
18	hos'	kJ/kg	2847.51		
19	pi'	bar A	100		
20	ti'	C	645		At hi and pi' (point B)
21	vi'	m ³ /kg	0.0408		See steam table at pi' and ti' (point B) or
22					extrapolate in steam table
23	CALCULATION				
24	Min. no. of stages, zmin		3		
25	Design dia., D	mm	550		Fig. 10. Nearest cross point RPM vs red dot line
26	Calculated number of stages, z1		5.63		Eq. 12
27	Design no. of stages, z	k l/ka	6		Select with Integer number $= \Delta hs' / z$
28	Enthalpy per stage, Δh_{STG}	kJ/kg	148.2		
29 20	Peripheral velocity, U	m/s	259.6		Equation 1
30	Head coefficient, μ_S		2.20		Equation 4
31	Efficiency, η_{05}		0.83		Figure 12
32	Entrance area factor, A		34		
33	<u>First stage</u> Ι x ε	m ==	1 400		Equation 15 but raplace D by (Abely my rec)
34 25		mm	1.493		Equation 15 but replace P by (Δ hs' x m x η_{05})
35 36	Nozzle height, I Degree of admission, ε	mm	25 0.060		Fill with adjustment Max. 0.9 for Rateau turbine, fig. 16
	5				•
37	Efficiency factor F ₁		0.97		Figure 13
38	Efficiency factor Fe		0.905		Equation in figure 13
39	Efficiency, η ₁	1.14	0.73		$= \eta_{05} \times F_1 \times F_{\varepsilon}$
40	hos ₁	kJ/kg	3588.75		Make point at steam chart
41	∆he _{STG-1}	kJ/kg	108.00		
42	he _{stg-1}	kJ/kg	3629.00		Make point at steam chart
43	po ₁	bar A	65.0		See steam chart
44	to ₁	С	590.0		
45	VO ₁	m ³ /kg	0.059		See steam table
46	P _{LOSS-1}	kW	213.09		Equation 5

1				
2	Last stage	"		
3	∆he	kJ/kg	648.0	= $\eta x \Delta hs'$ (preliminary eff. = 1'stg eff.) = hi- Δhe
4	hez	kJ/kg	3089.0	
5	hi _{stg-z}	kJ/kg	3197.0	=he _z + (Δ he/z). Point Da-2
6	pi ₁	bar A	9.0	See chart
7	ti ₁	С	375.0	
8	vi ₁	m ³ /kg	0.33	
9	Entrance area factor, A		43	
10	ΙΧε	mm	11.506	Equation 15 but replace P by (Δ hs' x m x η_{05})
11	Nozzle height, I	mm	30	
12	3		0.384	Max. 0.9 for Rateau turbine, fig. 16
13	Efficiency factor F ₁		0.96	See fig. 13
14	Efficiency factor F _ε		0.99	See fig. 13
15	Efficiency, η_Z		0.79	$= \eta_{05} \times F_1 \times F_{\epsilon}$
16	P _{LOSS-Z}	kW	30.98	Equation 5
17	Average and Total			
18	Total losses, P _{LOSS}	kW	732.23	$= z \times 0.5 \times (P_{LOSS-1} + P_{LOSS-Z})$
19	Average efficiency, η_{AVG}		0.76	$=(\eta_1 + \eta_Z) / 2$
20	Power output	kW	4879	Equation 9
21	Mechanical efficiency, η_m		0.977	Figure 15
22	BHP	kW	4767	$= \eta_m x P$
23	he	kJ/kg	3064	

